Lattice of Fuzzy Sets1
نویسندگان
چکیده
This article concerns a connection of fuzzy logic and lattice theory. Namely, the fuzzy sets form a Heyting lattice with union and intersection of fuzzy sets as meet and join operations. The lattice of fuzzy sets is defined as the product of interval posets. As the final result, we have characterized the composition of fuzzy relations in terms of lattice theory and proved its associativity.
منابع مشابه
On fuzzy convex lattice-ordered subgroups
In this paper, the concept of fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) of an ordered group (resp. lattice-ordered group) is introduced and some properties, characterizations and related results are given. Also, the fuzzy convex subgroup (resp. fuzzy convex lattice-ordered subgroup) generated by a fuzzy subgroup (resp. fuzzy subsemigroup) is characterized. Furthermore,...
متن کاملFUZZY PREORDERED SET, FUZZY TOPOLOGY AND FUZZY AUTOMATON BASED ON GENERALIZED RESIDUATED LATTICE
This work is towards the study of the relationship between fuzzy preordered sets and Alexandrov (left/right) fuzzy topologies based on generalized residuated lattices here the fuzzy sets are equipped with generalized residuated lattice in which the commutative property doesn't hold. Further, the obtained results are used in the study of fuzzy automata theory.
متن کاملEMBEDDING OF THE LATTICE OF IDEALS OF A RING INTO ITS LATTICE OF FUZZY IDEALS
We show that the lattice of all ideals of a ring $R$ can be embedded in the lattice of all its fuzzyideals in uncountably many ways. For this purpose, we introduce the concept of the generalizedcharacteristic function $chi _{s}^{r} (A)$ of a subset $A$ of a ring $R$ forfixed $r , sin [0,1] $ and show that $A$ is an ideal of $R$ if, and only if, its generalizedcharacteristic function $chi _{s}^{...
متن کاملFUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملLATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES
We study L-categories of lattice-valued convergence spaces. Suchcategories are obtained by fuzzifying" the axioms of a lattice-valued convergencespace. We give a natural example, study initial constructions andfunction spaces. Further we look into some L-subcategories. Finally we usethis approach to quantify how close certain lattice-valued convergence spacesare to being lattice-valued topologi...
متن کامل